An ionic charge-transfer dyad prepared cost-effectively from a tetrathiafulvalene carboxylate anion and a TMPyP cation.

نویسندگان

  • Li-Jun Xue
  • Peng Huo
  • Yan-Hong Li
  • Jin-Le Hou
  • Qin-Yu Zhu
  • Jie Dai
چکیده

Great progress has been made in combining a TTF moiety with a porphyrin unit by covalent bonds, but only a few examples were reported in which TTF and porphyrin assembled by noncovalent interactions. In contrast to the energy- and time-consuming synthetic procedures for the covalent system, the assembly of a non-covalent ionic system would be a cost-effective way to construct donor-acceptor ensembles. Herein a new type of ionic TTF-porphyrin dyad is obtained. A methylated tetra(4-pyridyl) porphyrin (5,10,15,20-tetrakis-(N-methyl-4-pyridyl)-porphyrin, TMPyP) is selected as the cation, and TTF-bicarboxylate (L(1)) or TTF-tetracarboxylate (L(2)) is used as the anion. Crystal structures of two TTF-TMPyP ionic D-A compounds, TMPyP-(HL(1))4·3H2O (1) and TMPyP-(H2L(2))2·5H2O (2), were characterized by single-crystal X-ray diffraction. The strong ionic interaction enhances the charge-transfer between the regular mixed-stacking donors and acceptors, which are investigated comprehensively by spectral, electrochemical and theoretical studies. The variation in properties between L(1) and L(2) is of great advantage to understand the influence factors for charge-transfer. The charge-transfer properties can be modulated not only by the nature of the donor or the acceptor, but also the cation-anion ratio in the salt, which shows great flexibility of the D-A ionic dyad in the design and preparation of new charge-transfer systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoinduced electron transfer in a supramolecular triad produced by porphyrin anion-induced electron transfer from tetrathiafulvalene calix[4]pyrrole to Li(+)@C60.

Binding of a porphyrin carboxylate anion () to tetrathiafulvalene calix[4]pyrrole (TTF-C4P) results in electron transfer from TTF-C4P to Li(+)@C60 to produce the charge-separated state (1/TTF-C4P˙(+)/Li(+)@C60˙(-)) in benzonitrile. Upon photoexcitation of , photoinduced electron transfer from the triplet excited state of to TTF-C4P˙(+) occurs to produce the higher energy charge-separated state ...

متن کامل

Polysulfone-based Anion Exchange Membranes for Potential Application in Solid Alkaline Fuel Cells

In present research work, anion exchange membranes based on quaternized polysulfone with ammonium cation moieties (QAPSF) were prepared by chloromethylation, amination and alkalization. The chloromethylated polysulfone were characterized by 1HNMR spectroscopy and functionalization degree was determined according to peak area integration. Ion transport properties (ionic conductivity, ion exchang...

متن کامل

Probing the acidity of carboxylic acids in protic ionic liquids, water, and their binary mixtures: activation energy of proton transfer.

Acidity functions were used to express the ability of a solvent/solution to donate/accept a proton to a solute. The present work accounts for the acidity determination of HCOOH, CH3COOH, and CH3CH2COOH in the alkylimidazolium-based protic ionic liquids (PILs), incorporated with carboxylate anion, water, and in a binary mixture of PIL and water using the Hammett acidity function, H0. A reversal ...

متن کامل

Mechanisms of CO2 capture in ionic liquids: a computational perspective.

We present computational studies of CO2 sorption in two different classes of ionic liquid. The addition of carbon dioxide to four superbase ionic liquids, [P3333][Benzim], [P3333][124Triz], [P3333][123Triz] and [P3333][Bentriz], was studied using the DFT approach and considering anions alone and individual ion pairs. The addition of CO2 to the anion alone clearly resulted in the formation of a ...

متن کامل

Ionic semiconductor: DC and AC conductivity of anilinium tetrathiafulvalene-2-carboxylate.

A single crystal of anilinium tetrathiafulvalene-2-carboxylate exhibits a characteristic electrical conduction; it is a semiconductor with activation-type transport above 200 K; σ(rt) = 0.16 S cm(-1) with an activation energy of 0.11 eV. On the other hand, below 200 K, it does not obey the Arrhenius relation but is conductive even at 4 K with 2.1 × 10(-4) S cm(-1) at a frequency of 2 MHz. Its b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 4  شماره 

صفحات  -

تاریخ انتشار 2016